Error bound between monotone difference schemes and their modified equations

نویسنده

  • Zhen-Huan Teng
چکیده

It is widely believed that if monotone difference schemes are applied to the linear convection equation with discontinuous initial data, then solutions of the monotone schemes are closer to solutions of their parabolic modified equations than that of the original convection equation. We will confirm the conjecture in this paper. It is well known that solutions of the monotone schemes and their parabolic modified equations approach discontinuous solutions of the linear convection equation at a rate only half in the L1-norm. We will prove that the error bound between solutions of the monotone schemes and that of their modified equations is order one in the L1-norm. Therefore the conclusion shows that the monotone schemes solve the modified equations more accurately than the original convection equation even if the initial data is discontinuous. As a consequence of the main result, we will show that the half-order rate of convergence for the monotone schemes to the convection equation is the best possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharpness of Kuznetsov's O L 1 -error Estimate for Monotone Difference Schemes

We derive a lower error bound for monotone diierence schemes to the solution of the linear advection equation with BV initial data. A rigorous analysis shows that for any monotone diierence scheme the lower L 1 error bound is O ?p x , where x is the size of space step.

متن کامل

Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations

We obtain non-symmetric upper and lower bounds on the rate of convergence of general monotone approximation/numerical schemes for parabolic Hamilton Jacobi Bellman Equations by introducing a new notion of consistency. We apply our general results to various schemes including finite difference schemes, splitting methods and the classical approximation by piecewise constant controls.

متن کامل

Error Bounds for Monotone Approximation Schemes for Non-convex Degenerate Elliptic Equations in R

In this paper we provide estimates of the rates of convergence of monotone approximation schemes for non-convex equations in one spacedimension. The equations under consideration are the degenerate elliptic Isaacs equations with x-depending coefficients, and the results applies in particular to finite difference methods and control schemes based on the dynamic programming principle. Recently, K...

متن کامل

Approximation Schemes for Monotone Systems of Nonlinear Second Order Partial Differential Equations: Convergence Result and Error Estimate

We consider approximation schemes for monotone systems of fully nonlinear second order partial differential equations. We first prove a general convergence result for monotone, consistent and regular schemes. This result is a generalization to the well known framework of Barles-Souganidis, in the case of scalar nonlinear equation. Our second main result provides the convergence rate of approxim...

متن کامل

Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions

We derive error estimates for approximate (viscosity) solutions of Bellman equations associated to controlled jump-diffusion processes, which are fully nonlinear integro-partial differential equations. Two main results are obtained: (i) error bounds for a class of monotone approximation schemes, which includes finite difference schemes, and (ii) bounds on the error induced when the original Lév...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010